OSE SEMINAR 2012

A Bayesian score for LDAGs

Johan Pensar

CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, NOVEMBER 29 2012

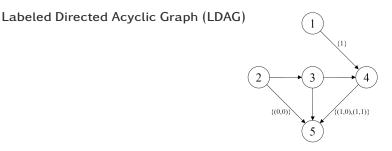
> Joint work with Henrik Nyman, Timo Koski and Jukka Corander.

Structure of the presentation

- Introduction
- Deriving the score function
- ▶ Example

Graphical model (GM)

- A GM is a probabilistic model for which a graph structure represents the dependence structure between a set of random variables.
- The nodes in the graph represent the variables and the edges represent direct dependencies among the variables.
- The absence of an edge represents statements of conditional independence (CI).
- In this talk we will only consider discrete variables.



- A directed acyclic graph for which certain labels have been added to edges.
- In an LDAG-based GM, the labels represent statements of context-specific independence (CSI).
- ► Consider the label on edge (4,5):

$$\mathcal{L}_{(4,5)} = \{ (1,0), (1,1) \} \qquad \Rightarrow X_5 \perp X_4 \mid (X_2, X_3) \in \{ (1,0), (1,1) \} \\ \Leftrightarrow X_5 \perp X_4 \mid X_2 = 1, X_3$$

Factorization of the joint distribution according to an LDAG

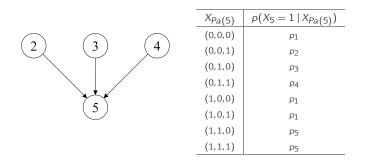
"Fundamental to the idea of a graphical model is the notion of modularity – a complex system is built by combining simpler parts."

- In a GM, the joint distribution is factorized by the graph into lower order distributions.
- Factorization according to an LDAG over $\{X_1, X_2, \dots, X_d\}$:

$$p(X_1,\ldots,X_d) = \prod_{j=1}^d p(X_j \mid X_{Pa(j)})$$

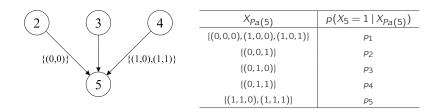
 The result is a product of conditional probability distributions (CPD).

Conditional probability table (CPT)



- ▶ Grows exponentially with the number of parents.
- ▶ Fails to capture any regularities among the CPDs.

Reduced conditional probability table



►
$$\mathcal{X}_{Pa(j)} \xrightarrow{\mathcal{L}_j} \mathcal{S}_{Pa(j)} = \{S_1, S_2, \dots, S_{k_j}\}$$
 where $S_l \cap S_{l'} = \emptyset$ (for $l \neq l'$)
and $\bigcup_{l=1}^{k_j} S_l = \mathcal{X}_{Pa(j)}$.

Johan Pensar: A Bayesian score for LDAGs Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Learning of LDAGs

- In the learning process we want to find the optimal LDAG for a set of data X = {x_i}ⁿ_{i=1} consisting of *n* observations x_i = (x_{i1},...,x_{id}) of the variables {X₁,...,X_d} such that x_{ij} ∈ X_j.
- > This problem can be divided into two parts:
 - 1. To define a score that evaluates the appropriateness of the models.
 - 2. To develop a search algorithm that searches through parts of the model space in order to find the model with the highest score.

The Bayesian approach

- ► In the Bayesian approach to model learning, one is interested in the posterior distribution of the models given the data X.
- ▶ The posterior probability of an LDAG (G_L) is

$$p(G_L \mid \mathsf{X}) = \frac{p(\mathsf{X}, G_L)}{p(\mathsf{X})} = \frac{p(\mathsf{X} \mid G_L) \cdot p(G_L)}{p(\mathsf{X})}.$$

- The denominator is a normalizing constant that does not depend on G_L and can therefore be ignored when comparing graphs.
- Our goal is thus to maximize

$$p(\mathbf{X}, G_L) = p(\mathbf{X} \mid G_L) \cdot p(G_L).$$

Marginal likelihood $p(X, G_L) = p(X | G_L) \cdot p(G_L)$

- ▶ $p(X | G_L)$ is the marginal probability of observing the data X given a graph G_L .
- ► To evaluate $p(X | G_L)$, we need to consider all possible instances of the parameter vector θ according to

$$p(\mathbf{X} \mid G_L) = \int_{\theta \in \Theta_{G_L}} p(\mathbf{X} \mid G_L, \theta) \cdot f(\theta \mid G_L) d\theta,$$

where Θ_{G_L} denotes the parameter space induced by the LDAG.
p(X | G_L, θ) and f(θ | G_L) are the respective likelihood function and prior distribution over the parameters.

11 | 16

Marginal likelihood $p(X, G_L) = p(X | G_L) \cdot p(G_L)$

 Under certain assumptions, the marginal likelihood can be calculated analytically

$$p(\mathbf{X} \mid G_L) = \prod_{j=1}^{d} \prod_{l=1}^{k_j} \frac{\Gamma(\sum_{i=1}^{r_j} \alpha_{ijl})}{\Gamma(n(S_{jl}) + \sum_{i=1}^{r_j} \alpha_{ijl})} \prod_{i=1}^{r_j} \frac{\Gamma(n(x_{ji} \times S_{jl}) + \alpha_{ijl})}{\Gamma(\alpha_{ijl})},$$

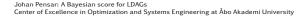
where α_{ijl} are hyperparameters and n(S) is the number of times any of the elements in S occur in the data.

Prior over the LDAGs $p(X, G_L) = p(X | G_L) \cdot p(G_L)$

- Prior probability of the LDAG.
- Generally not given too much attention in model learning for ordinary DAGs (Uniform prior).
- Essential part of the score when evaluating LDAGs.
- We define our prior by

$$p(G_L) = c \cdot \kappa^{|\Theta_G| - |\Theta_{G_L}|} = c \cdot \prod_{j=1}^d \kappa^{(|\mathcal{X}_j| - 1) \cdot (|\mathcal{X}_{P_a(j)}| - |\mathcal{S}_j|)},$$

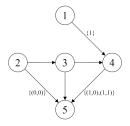
where $\kappa \in (0, 1]$ can be considered a measure of how strongly a label is penalized when added to the graph.



Putting the pieces together: $p(X, G_L) = p(X | G_L) \cdot p(G_L)$

$$p(\mathbf{X}, G_L) = c \cdot \prod_{j=1}^{d} \kappa^{(|\mathcal{X}_j|-1) \cdot (|\mathcal{X}_{Pa(j)}|-|\mathcal{S}_j|)} \prod_{l=1}^{k_j} \frac{\Gamma(\sum_{i=1}^{r_j} \alpha_{ijl})}{\Gamma(n(S_{jl}) + \sum_{i=1}^{r_j} \alpha_{ijl})} \prod_{i=1}^{r_j} \frac{\Gamma(n(x_{ji} \times S_{jl}) + \alpha_{ijl})}{\Gamma(\alpha_{ijl})}$$

Example (n=500)

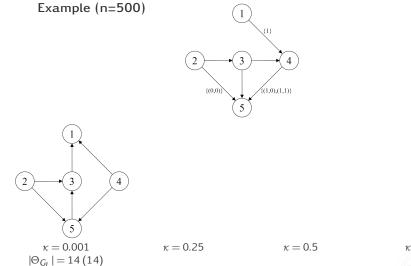


$$\kappa = 0.001$$

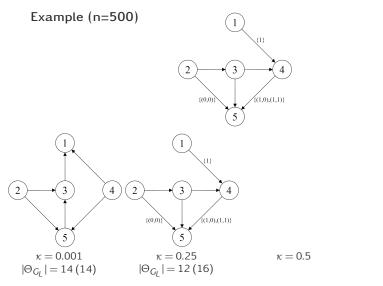
 $\kappa = 0.25$

 $\kappa = 0.5$

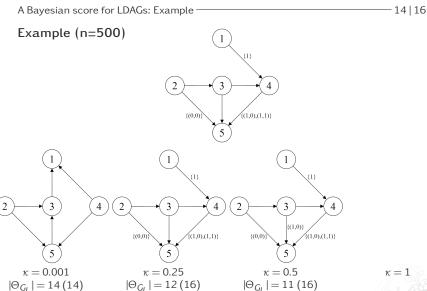
Johan Pensar: A Bayesian score for LDAGs Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University



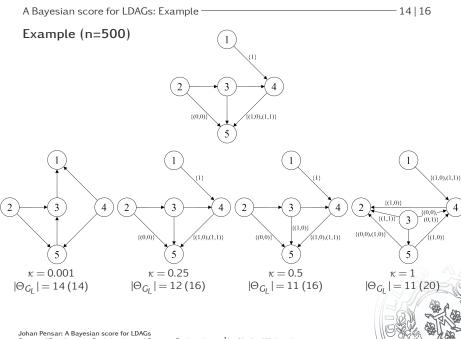
Johan Pensar: A Bayesian score for LDAGs



 $\kappa = 1$



Johan Pensar: A Bayesian score for LDAGs Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University



Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Some references

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.

Context-specific independence in bayesian networks. In E. Horvitz and F.V. Jensen, editors, *Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence*, pages 115–123. Morgan Kaufmann, 1996.

J. Corander.

Labelled graphical models. Scandinavian Journal of Statistics, 30:493–508, 2003.

N. Friedman and M. Goldszmidt.

Learning bayesian networks with local structure. In E. Horvitz and F.V. Jensen, editors, *Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence*, pages 252–262. Morgan Kaufmann, 1996.

J. Pensar, H. Nyman, T. Koski, and J. Corander.

Labeled directed acyclic graphs. *Submitted*, 2012.

Thank you for listening!

Questions?

